

Università degli Studi di Padova

Application of the STIR model to a small river at different river flow rates

Steve Wallis

Heriot-Watt University Edinburgh, UK

Eleonora Dallan

University of Padova Padova, Italy

- Background
- STIR model
- Application to Murray Burn tracer data
- Variation of model parameters with flow rate
- Conclusions

- River pollution modelling
 - Given information on pollutant concentrations at an upstream location, predict future conditions at one or more locations downstream
 - Several approaches developed since 1960s:
 - Advection-dispersion
 - Transient storage
 - Aggregated dead zone
 - Unitized peak
 - Similarity

Transient storage

- Transport: advection-dispersion in main channel
- Storage: trapping in, and exchange with, peripheral zones

Reality check

- Aims of presentation
 - Introduce STIR (solute transport in rivers) model
 - Illustrate how the model's parameters vary with river flow rate using Murray Burn tracer data
 - Compare results with previous analysis of Murray Burn tracer data

STIR Model

Commonly used transient storage model

$$\frac{\partial C}{\partial t} + U \frac{\partial C}{\partial x} = D \frac{\partial^2 C}{\partial x^2} + k_1 (S - C)$$

$$\frac{\partial S}{\partial t} = -k_2(S-C)$$

- C pollutant concentration in main channel
- S pollutant concentration in storage zones
- U flow velocity in main channel
- **D** dispersion coefficient in main channel
- k₁ pollutant exchange rate (main channel to storage zones)
- k₂ pollutant exchange rate (storage zones to main channel)
- x longitudinal space co-ordinate, t time

STIR Model

Model equation

$$\frac{\partial C}{\partial t} + U \frac{\partial C}{\partial x} = D \frac{\partial^2 C}{\partial x^2} - \sum_{i=1}^N \left\{ \alpha_i C - \int_0^t \alpha_i C \varphi_i (t-\tau) d\tau \right\}$$

- α_i solute mass exchange rate for the ith storage zone
- ϕ_i residence time function for the ith storage zone
- τ dummy time variable
- N number of storage zones

Reach details

Read	ch I	Length (m)	Mean width (m)	Mean slope	Description
13		236	3.5	0.021	Upper 100 m: natural channel, meandering, boulders Lower 136 m: modified channel, straight, cobbles
I4		420	3.0	0.016	Upper 100 m: natural channel, meandering, boulders Lower 320 m: modified channel, straight, cobbles
34		184	2.4	0.009	Throughout: modified channel, straight, cobbles

Reach details

lower part of reach I3

reach 34

- Model calibration
 - One storage zone with an exponential residence time distribution
 - Nine experiments; flow rates 15 400 L/s
 - Temporal concentration data interpolated to time step of 2.5 s
 - Temporal concentration data truncated at 4tp where tp is time delay between first rise above background and peak
 - 4 model parameters optimised using linear fitting around the peak and logarithmic fitting on the tail
 - Model applied to three reaches: I3, I4 and 34

• Example model fits: experiment 7

Variation of model parameters with flow rate

Transient storage

All expts: 34 > I4 > I3 All reaches: reduce with Q Most expts: 34 > I4 and I3 All reaches: reduce with Q

Variation of model parameters with flow rate

Main channel

Heron > STIR: 1% for I3 (2% for I4; 3% for 34) Heron > STIR: 22% for I3 (25% for I4; 66% for 34)

Conclusions

- Optimised STIR model parameters are reliable
 - Values are consistent with nature of reaches
 - Values vary with flow rate in expected manner
 - Values are consistent with independent analysis