Monitoring of riparian vegetation growth on fluvial sandbars

Michael Nones1, Massimo Guerrero2, Renata Archetti2

1 Institute of Geophysics, Polish Academy of Sciences, Poland
2 DICAM, University of Bologna, Italy
Problem definition

Case study

Bankline extraction

Vegetation patterns

Di Silvio & Nones, ISRS 2013

Q_{max}
$Q(t)$
Q_{min}

$B(t)$
Water flow

B
B_{veg}
Nude surface (active width for transport)
Vegetated surface (grass, shrubs and trees)
Total surface, B_{tot}

$K(t) = dB_{\text{veg}}/dB_{\text{tot}}$
Vegetation density

Monitoring of riparian vegetation growth on fluvial sandbars
Problem definition

Case study

Bankline extraction

Vegetation patterns

Monitoring of riparian vegetation growth on fluvial sandbars
Problem definition

Case study

Bankline extraction

Vegetation patterns

- video camera Mobotix MX-M15D-SEC
- router Sierra Wireless RV50
- images acquired every 12 hours (day/night sensors)
- monitored period: July 2017-November 2018

Monitoring of riparian vegetation growth on fluvial sandbars
water levels monitored every 30’
hourly averaged and adjusted considering the water slope

the reference level is used for water management and flood/drought warning
Problem definition

Case study

Bankline extraction

Vegetation patterns

Monitoring of riparian vegetation growth on fluvial sandbars

USV with GPS

linear homography

50 target points

(25 training + 25 validation)
studied period: July-December 2017
maximum vegetated areas follow a dry period
floods tend to destroy the vegetation
being seasonal, during the winter the vegetation dies

what are the main drivers of the vegetation growth?
monitoring edge-of-water lines displacements and vegetation patterns with a fixed camera is an economic and reliable method for pointing out fluvial dynamics at the reach scale
flooding waves remove sediments (and seeds) accumulated on the central bar during low flow conditions, redistributing them across a wider cross section
floods destroy vegetation patterns created during low flow conditions, but contribute in redistributing the seeds along and across the channel
vegetation patterns are related to seasonality, therefore a longer monitoring period is necessary

combining field survey (camera) with remote sensing (satellite) can provide insights on the medium- to long-term vegetation dynamics over fluvial sandbars
intrinsic uncertainties related to camera (image rectification) and satellite (image resolution) data affect the final results
Thank you for your attention

Michael Nones¹, Massimo Guerrero², Renata Archetti²

¹ Institute of Geophysics, Polish Academy of Sciences, Poland – mnones@igf.edu.pl
² DICAM, University of Bologna, Italy

This research has been partially developed in the framework of the project INFRASAFE - Monitoraggio intelligente per infrastrutture sicure, April 2016–March 2018, founded by the Emilia-Romagna Region of Italy, through the POR FESR 2014–2020.

The work of Michael Nones was supported within the statutory activities No. 3841/E-41/S/2018 of the Ministry of Science and Higher Education of Poland.
Monitoring of riparian vegetation growth on fluvial sandbars
mnones@igf.edu.pl
- errors computed by subtracting the actual position of the target points from the assessed one
- errors <20 m till a distance of 250 m from the camera, then reach a max of around 70 m
- the error is a function of the lateral distance (azimuth): for points having the same longitudinal distance, the higher the distance from the optical axis, the higher the error
Problem definition

Case study

Bankline extraction

Vegetation patterns

\[
NDVI = \frac{NIR - Red}{NIR + Red} = \frac{\text{band5} - \text{band4}}{\text{band5} + \text{band4}}
\]

Class I NDVI < 0.0 water
Class II NDVI 0.0–0.1 bare soil
Class III NDVI 0.1–0.2 seasonal vegetation
Class IV NDVI 0.2–0.4 semi-permanent vegetation
Class V NDVI > 0.4 permanent vegetation

Monitoring of riparian vegetation growth on fluvial sandbars