Theoretical Analysis of the Reduction of Pressure Wave Velocity by Internal Circular Tubes

Michał Kubrak, Apoloniusz Kodura

Faculty of Building Services, Hydro and Environmental Engineering
WARSAW UNIVERSITY OF TECHNOLOGY
The water hammer phenomenon

Joukowsky equation

$$\Delta p = \rho c v_0$$

where:
- Δp – pressure increase [Pa],
- ρ – water density [kg·m$^{-3}$],
- c – pressure wave velocity [m·s$^{-1}$],
- Δv_0 – initial water flow velocity [m·s$^{-1}$].
The water hammer protection devices

- safety valve
- surge tanks
Previous work

Remenieras (1952) Tijsseling et al. (1999)
Water hammer equations

\[
\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} + g \frac{\partial H}{\partial x} + \frac{f}{2D} |v| = 0
\]

momenum equation

\[
\frac{\partial H}{\partial t} + v \frac{\partial H}{\partial x} + \frac{c^2}{g} \frac{\partial v}{\partial x} = 0
\]

continuity equation

where:
- \(x\) – space co-ordinate [m],
- \(t\) – time [s],
- \(c\) – pressure wave velocity [m\cdot s^{-1}]
- \(\Delta v\) – water flow velocity [m\cdot s^{-1}],
- \(f\) – Darcy-Weisbach friction factor [m\cdot s^{-1}],
- \(D\) – inner diameter of the pipeline [m],
- \(g\) – gravitational acceleration [m\cdot s^{-2}].
Water hammer equations

\[\Delta p = \rho c v_0 \]
Joukowsky equation

\[\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} + g \frac{\partial H}{\partial x} + \frac{f}{2D} v |v| = 0 \]
momentum equation

\[\frac{\partial H}{\partial t} + v \frac{\partial H}{\partial x} + \frac{c^2}{g} \frac{\partial v}{\partial x} = 0 \]
continuity equation

where:

\[c \] – pressure wave velocity [m⋅s\(^{-1}\)].
Pressure wave velocity

\[c = \frac{\sqrt{\frac{K}{\rho}}}{\sqrt{1 + \frac{KD}{Ee}}} \]

Korteweg-Joukowsky equation

where:
\(K \) – water compressibility [Pa],
\(\rho \) – water density [kg\cdot m^{-3}],
\(D \) – internal diameter of the pipeline [m],
\(E \) – Young’s modulus of the pipeline wall [Pa],
\(e \) – pipeline wall thickness [m].
Different types of tubes

- **Thin-walled tube**
- **Thick-walled tube**
- **Solid cylindrical tube**
General assumptions

• Perfect elastic behavior of the liquid, pipeline and tube.

• The pipeline is thin-walled and, therefore, only hoop stress was taken into account.

• During steady flow, the liquid pressure in the pipeline is the same as the pressure of the gas in the tube.

• The air pressure in the tube is much smaller than Young’s modulus of the tube’s material.
Conservation of energy

\[E_k = E_l + E_p + E_t \]

change of the kinetic energy of liquid stream = increase of the elastic energy of liquid stream + increase of the elastic energy of the pipeline + increase of the elastic energy of the tube
<table>
<thead>
<tr>
<th>Type of the pipeline system</th>
<th>Pressure wave velocity formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline with inserted thin-walled tube</td>
<td>[c_n = \sqrt{\frac{K}{\rho}} \left[1 + \frac{A_1 KD_1}{A E_1 e_1} + \frac{A_2 KD_2}{A E_2 e_2} \right]]</td>
</tr>
<tr>
<td>Pipeline with inserted thick-walled tube</td>
<td>[c_k = \sqrt{\frac{K}{\rho}} \left[1 + \frac{A_1 KD_1}{A E_1 e_1} + \frac{A_2 K}{A E_2} \left(\frac{D_2}{e_2} - 1 \right) \right]]</td>
</tr>
<tr>
<td>Pipeline with inserted solid circular tube</td>
<td>[c_c = \sqrt{\frac{K}{\rho}} \left[1 + \frac{A_1 KD_1}{A E_1 e_1} + \frac{A_2 K}{A E_2} \right]]</td>
</tr>
</tbody>
</table>

where:
- \(E_1 \) – Young’s mod. of the pipeline wall [Pa],
- \(E_2 \) – Young’s mod. of the tube wall [Pa],
- \(A \) – cross-section area of the stream \([m^2]\),
- \(A_1 \) – cross-section area of the pipeline \([m^2]\),
- \(A_2 \) – cross-section area of the tube \([m^2]\).
<table>
<thead>
<tr>
<th>Type of the pipeline system</th>
<th>Pressure wave velocity formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline with inserted thin-walled tube</td>
<td>$c_n = \sqrt{\frac{K}{\rho} \left(1 + \frac{A_1 KD_1}{A E_1 e_1} + \frac{A_2 KD_2}{A E_2 e_2} \right)}$</td>
</tr>
<tr>
<td>Pipeline with inserted thick-walled tube</td>
<td>$c_k = \sqrt{\frac{K}{\rho} \left(1 + \frac{A_1 KD_1}{A E_1 e_1} + \frac{A_2 K}{A E_2} \left(\frac{D_2}{e_2} - 1 \right) \right)}$</td>
</tr>
<tr>
<td>Pipeline with inserted solid circular tube</td>
<td>$c_c = \sqrt{\frac{K}{\rho} \left(1 + \frac{A_1 KD_1}{A E_1 e_1} + \frac{A_2 K}{A E_2} \right)}$</td>
</tr>
</tbody>
</table>

where:
- E_1 – Young’s mod. of the pipeline wall [Pa],
- E_2 – Young’s mod. of the tube wall [Pa],
- A – cross-section area of the stream [m2],
- A_1 – cross-section area of the pipeline [m2],
- A_2 – cross-section area of the tube [m2].
<table>
<thead>
<tr>
<th>Type of the pipeline system</th>
<th>Pressure wave velocity formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline with inserted thin-walled tube</td>
<td>[c_n = \sqrt{\frac{K \rho}{1 + \frac{A_1}{A K D_1} + \frac{A_2}{A E_1 e_1} + \frac{A_2}{A E_2 e_2}}}]</td>
</tr>
<tr>
<td>Pipeline with inserted thick-walled tube</td>
<td>[c_k = \sqrt{\frac{K \rho}{1 + \frac{A_1}{A K D_1} + \frac{A_2}{A E_1 e_1} + \frac{K}{A E_2} \left(\frac{D_2}{e_2} - 1 \right)}}]</td>
</tr>
<tr>
<td>Pipeline with inserted solid circular tube</td>
<td>[c_c = \sqrt{\frac{K \rho}{1 + \frac{A_1}{A K D_1} + \frac{A_2}{A E_1 e_1} + \frac{A_2}{A E_2}}]</td>
</tr>
</tbody>
</table>

where:
- \(E_1 \) – Young’s mod. of the pipeline wall [Pa],
- \(E_2 \) – Young’s mod. of the tube wall [Pa],
- \(A \) – cross-section area of the stream [m²],
- \(A_1 \) – cross-section area of the pipeline [m²],
- \(A_2 \) – cross-section area of the tube [m²].
<table>
<thead>
<tr>
<th>Type of the pipeline system</th>
<th>Pressure wave velocity formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline with inserted thin-walled tube</td>
<td>$c_n = \sqrt{\frac{K}{\rho \left(1 + \frac{A_1 K D_1}{A E_1 e_1} + \frac{A_2 K D_2}{A E_2 e_2}\right)}}$</td>
</tr>
<tr>
<td>Pipeline with inserted thick-walled tube</td>
<td>$c_k = \sqrt{\frac{K}{\rho \left(1 + \frac{A_1 K D_1}{A E_1 e_1} + \frac{A_2 K}{A E_2 \left(e_2 - 1\right)}\right)}}$</td>
</tr>
<tr>
<td>Pipeline with inserted solid circular tube</td>
<td>$c_c = \sqrt{\frac{K}{\rho \left(1 + \frac{A_1 K D_1}{A E_1 e_1} + \frac{A_2 K}{A E_2}\right)}}$</td>
</tr>
</tbody>
</table>

Where:
- K is a constant
- ρ is the density
- A_1, A_2 are cross-sectional areas
- D_1, D_2 are diameters
- E_1, E_2 are moduli of elasticity
- e_1, e_2 are thicknesses

Diagram:
- D is the diameter
- $A_2 = 0$

Equation for c:
$$c = \sqrt{\frac{K}{\rho \sqrt{1 + \frac{KD}{Ee}}}}$$
Comparison of pressure wave velocity values

pipeline with thin-walled tube

pipeline with thick-walled tube

outer diameter of the tube

inner diameter of the pipeline

Warsaw University of Technology

15
Comparison of pressure wave velocity values

pipeline without the tube

pipeline with thick-walled tube

usable in practice

theoretical considerations

\[
\frac{c_k}{c} [\cdot]
\]

\[
D_2 / D_1 [\cdot]
\]

\[
e_2 / D_2 = 0.1
\]

\[
e_2 / D_2 = 0.2
\]

\[
e_2 / D_2 = 0.3
\]

\[
e_2 / D_2 = 0.4
\]

\[
e_2 / D_2 = 0.5 \text{ (cylindrical tube)}
\]

outer diameter of the tube

inner diameter of the pipeline
Comparison of pressure increase values

pipeline without the tube
pipeline with thick-walled tube

outer diameter of the tube inner diameter of the pipeline

usable in practice

\[\frac{\Delta p_{\text{r}}}{\Delta p} \]

\[D_2 / D_1 [-] \]

theoretical considerations

- \(e_2 / D_2 = 0.1 \)
- \(e_2 / D_2 = 0.2 \)
- \(e_2 / D_2 = 0.3 \)
- \(e_2 / D_2 = 0.4 \)
- \(e_2 / D_2 = 0.5 \) (cylindrical tube)
Conclusions and summary

- In the analysis three types of tubes were distinguished: thin-walled tube, thick-walled tube and solid cylindrical tube. For each of these cases, using the work-energy principle, a formula for calculating the pressure wave velocity was derived.

- The values calculated for thin-walled tubes are smaller than those calculated for thick-walled tubes. However, for the assumed range of calculations, these differences are negligibly small.
Conclusions and summary

- The formula for the pressure wave velocity in a pipeline with a thick-walled tube has a wider application because by substituting $e_2 = D_2/2$, it transforms into a formula for the velocity of pressure wave with a solid cylindrical tube.

- It was shown that insertion of a tube with low bulk elastic modulus, may have a damping effect on the water hammer phenomenon, i.e., it reduces the pressure wave velocity and maximum pressure increase. The damping properties of the tubes are higher when the Young’s modulus and wall thickness are lower.
Theoretical Analysis of the Reduction of Pressure Wave Velocity by Internal Circular Tubes

Michał Kubrak, Apoloniusz Kodura

Faculty of Building Services, Hydro and Environmental Engineering
Warsaw University of Technology
Results of the experimental tests

- Without inserted tube
- With inserted tube

p [MPa] vs t [s]