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House partially buried 

by sediment

Headcut erosion: one of 

the sediment sources 

Earlier Soil Conservation Problems in the US
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Water is not always Beautiful !
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Introduction

• Needs for numerical model verification and 

validation

• Principles of verification and validation

• V&V for CCHE3D/2D free surface flow models

• Applications in hydrodynamic, sediment transport 

and morphologic processes

5/27/2019 International School of Hydraulics 2019, Poland



Serious Consequences

 NASA’s Mariner 1 was destroyed due to code 

error (July 22,1962).

 Just 293 seconds after launch, a range 

safety officer ordered a destructive abort 

when it veered off course after an 

unscheduled yaw-lift maneuver. 

 Verification: “a missing hyphen in coded 

computer instruction in the data-editing 

program allowed transmission of incorrect 

guidance signals”. 

 The cost of Mariners 1 through 10 was 

approximately $135 million, making that 

missing hyphen an expensive mistake.
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Other serious problems

 Sleipner A, offshore oil rig had a 

catastrophic failure in the North 

Sea (August 23,1991).

 The failure resulted from an error 

caused by un-conservative 

concrete codes and inaccurate 

finite element analysis modelling 

in the design of the structure. 

 Financial loss was estimated 

$180M to $700M
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How to find a bug in a jungle?
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NUMERICAL MODEL 

VERIFICATION & VALIDATION

 Mathematical Verification

Mathematical (derivation, solution, programming) errors

Convergence and Quantitative Error

 Physical Validation

Capable of reproducing basic physical 

processes

 Site Specific Field Validation

Calibration of Model Parameters

Validation of Over-All Accuracy
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Verification: 

Solve the equation right

Validation: 

Solve the right equation
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I. Mathematical Verification
Prescribed Solution Forcing or Manufactured Solution Method

For a differential equation      A(U)=0                       (1)

A manufactured solution V is an arbitrary analytic function of space and time.

Insert V into Eq.1, One has 

A(V)=f , f≠0            (2)

f is a known analytic function obtained simply by calculus derivation

V now is a known analytic solution of Eq. 2.

Include analytic form of f in the numerical model as source terms

The deferential equation (2) can be used to solve V numerically

Rationale:

The best way to verify a numerical model is to compare its solution to analytical 

solutions of  the differential equations. It is, however, very difficult to obtain non-trivial 

solutions, MSM suggests to use manufactured arbitrary solutions for model verification 
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Manufactured Solution I
Three dimensional, unsteady and non-linear solutions are 

“manufactured” for numerical verification
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Manufactured Solution II

Steady state 3D none-linear 

manufactured solution with a free 

surface
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Governing Equations of 3D Free Surface Flows

Momentum conservation:

Mass conservation:

Free Surface kinetic:

νt=constant

Inserting Solution I into the momentum equation, one has to calculate
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CCHE3D verified using MSM
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Efficient element method combining finite 

element and finite volume approach

 Non-uniform quadrilateral grid

 collocation approach

 Partially staggered pressure grid 

 Hydro-static/dynamic pressure

 Free surface

 Non-oscillation 

 Wet/dry moving boundary

 Modulated coding method
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Parameters 
A=0.5m, t=t0 

Δt=0.01  

A=0.5m, t=t0 

Δt=0.001  

 C R2 C R2 

Error-u 0.0068 0.9999 0.003 1. 

Error-v 0.0068 0.9999 0.003 1. 

Error-w 0.0035 0.9996 0.0007 0.9937 

Error-p 0.0055 0.9995 0.0059 0.9995 

Error-h 0.0437 0.9999 0.0107 0.9989 

 Convergence for a steady state solution (t=t0)

2E C 
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The time t in the source term and 

boundary conditions are set to be 

to All boundary conditions are of 

Dirichlet except at water surface: 
3

0iu

x






Verification using Solution I
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F 

 

 

Linear 

terms 

only 

1st order 

upwinding 

Convective 

interpolation 

1.6 order 

upwinding 

2nd order 

upwinding 
QUICK scheme 

 A=0.5 A=0.5 A=0.5 A=0.5 A=0.5 A=0.0 

 C C R2 C R2 C R2 C R2 C R2 

Error-u 0.0017 0.0041 0.9999 0.0021 0.9998 0.0021 1.0 0.0017 1.0 0.0011 1.0 

Error-v 0.0017 0.0041 0.9999 0.0021 0.9998 0.0021 1.0 0.0017 1.0 0.0011 1.0 

Error-w 0.0002 0.0008 1.0 0.0003 0.9999 0.0002 0.9996 0.0002 0.9999 0.00005 0.9994 

 

Test cases regard to non-linear terms using Function I

2E C  2E C 1.6E C 1.0E C 

• Value of C indicates error level, the exponent indicates convergence; R2 indicates consistency

• Linear terms alone shows the lowest errors and 2nd order convergence

• Error will increase when advection terms are included

• First order upwinding shows the highest error

• Quick scheme is 2nd order and shows the lowest error among all schemes tested

• Error is smaller without mesh distortion (A=0)

• Convergence behavior of each term could be tested individually

2E C 
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Convergence of unsteady cases
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When unsteady cases are 

considered, error norms vary in 

time. 

Averaged error norms are used to 

evaluate convergence due to time 

step size

Error norm using first order Euler and QUICK scheme

• Time averaged error norm using a 

second order corrected Euler time 

marching scheme

• Time step is varied with fixed mesh

• Second order convergence is 

achieved larger Δt.

• When time step is small, the errors 

due to time and space are getting 

close in magnitude, the convergence 

trend flattened 

Error norm 

using 

second 

order 

Euler and 

QUICK 

scheme
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Manufactured 

solution

Mesh:
11x11x11

Mesh:
21x21x21

Mesh:
61x61x61

Comparisons in the middle level of the domain: z/h=0.5

Numerical solution
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2xcErr uu  0015.0uc 9936.02 R

2xcErr vv  0015.0vc 9930.02 R

2xcErr ww  0012.0wc 995.02 R
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Verification using Solution II
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Findings
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1. One bug was identified and corrected which reduce the
dynamic pressure accuracy in deformed element from 2nd order 
to 1st order. 

2.  Identified the accuracy of upwinding schemes: 
Convective interpolation: 1.6 order
Quick scheme : 2.0 order with small error coefficient

3. The MSM is effective to identify derivation/coding errors.
But it has to be done in the developer level.



Numerical model validation 

Examples validating CCHE3D/2D 

using physical experimental data 
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CCHE3D model with non-linear k-ε closure model
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Flume Walls

Plan View

Side View
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CCHE3D 

simulation of bridge 

scour. 



Physical Process of Pier Scour

Sediment entrainment and transport by turbulent flow 
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• Horse-shoe vortex flow structure

• Turbulent flow fluctuation

• Down flow near the front of the pier

• Vortices in wake zone
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Numerical model 

validation using 

experimental data

Comparisons of simulated 

and measure flow velocity 

near the bed of the scour hole

Comparisons of 

simulated and measure 

flow velocity in the 

vertical front plan of 

the scour hole
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Turbulence 
kinetic energy

Additional 
Turbulence 
kinetic energy 
generated

RANS models cannot produce turbulent 

fluctuations induced by downflows

parallel flow downflow induced effective shear   

parallel flow  Law of the wall

downflow induced effective shear  Turbulent flow around structure 



National Center for Computational Hydroscience and Engineering

The University of Mississippi

Difficulties in modeling local 

scouring

• Turbulence fluctuations

• Vertical flows

• Local vortices

5/27/2019
International School of Hydraulics 2019, 

Poland

DNS/LES model

Sediment transport formulation

effective parallel flow downflow impingement   
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The University of Mississippi

Local Scour Model (1)

In the approach flow
Turbulence energy (Nezu and Nakagawa,1993)

Eddy Viscosity

Energy Dissipation
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International School of Hydraulics 2019, 

Poland
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Local Scour Model (2)

In the scour hole

Eddy viscosity

Turbulence 

Energy

Total Turbulence 

Energy available
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Local Scour Model (3)

In the scour hole

Turbulence fluctuation (intruding)

for sediment entrainment

is related to available fluctuation and

near bed perpendicular velocity  
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Local Scour Model (4)

The additional shear velocity for sediment incipient 

motion 

The effective shear stress: 
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International School of Hydraulics 2019, 

Poland

2

3
0.456

s s

I R s R

C C
u w k R C k R

 
   

  

e Iu u u   



Experiment Data
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Bed

Slope

Width(m) D(m) d50(mm) H(m) Q(m3/s) Scour

time(min)

Scour

depth(m)

Bed

roughness

ks(mm)

Mesh

C1 0.006 0.8 0.2 1.633 0.235 0.0585 300 0.124 1.633 41x153x12

C2 0.006 0.8 0.074 3.4 13.3 0.06 3.4 41x153x14

C3 0.0 1.5 0.1x0.1 1.63 0.1 0.06 4800 0.222 1.63 91x113x10

C4 0.0 0.8 0.08x0.16 1.5 0.1 0.04 180 0.115 1.5 59x105x10

Dept of Civil Eng. 

Dokuz Eylül University,

Izmir, Turkey



Case 1 (steady flow, uniform sediment) results
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Case 2 (unsteady flow, non-uniform sediment) results
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Two mode sediment Discharge hydrograph Water depth hydrograph
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scour contours
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Field data of the Mississippi 

River was used 

--Victoria Bendway

III. Application Site Validation

A bendway with 

man-made 

structures to 

improve 

navigation

International School of Hydraulics 2019, Poland5/27/2019
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1 m/s (unit length)The channel flow was 

simulated using real 

conditions. numerical model 

was validated with many 

data points and later used 

for hydraulic analysis
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