

Hydrodynamics of water-worked and screeded gravel-bed flows

Ellora Padhi¹, Nadia Penna², Subhasish Dey¹ and Roberto Gaudio²

¹ Department of Civil Engineering Indian Institute of Technology Kharagpur India

> ² Dipartimento di Ingegneria Civile Università della Calabria Italy

Introduction

Flow over a gravel bed is a topic of interest due to its complex three dimensional structure in the near-bed flow region

Resolving the degree of flow spatial heterogeneity is important for estimating flow resistance and performing bedload transport prediction in mountainous rivers

Fig. 1 Photograph of a natural gravel-bed stream

To resolve the spatial heterogeneity, the area averaging is performed over the time-averaged quantity over layer parallel to the mean bed surface, called the *double averaging methodology* (DAM)

In DAM the local instantaneous quantity follows the traditional Reynolds decomposition

 $\theta = \overline{\theta} + \theta'$

and the local time-averaged quantity is decomposed as

Objective

Fig. 3 Photograph of a natural gravel-bed stream (WGB) and a screeded gravel bed (SGB) in a laboratory flume

To examine the DA streamwise velocity and SA turbulent flow parameters in a WGB with respect to an SGB keeping the flow conditions identical in both the beds.

Experimental setup

Experiments were performed in a rectangular flume of 9.6 m long, 0.485 m wide and 0.5 m high at Università della Calabria, Italy

Properties of sediment

Median diameter $d_{50} = 4.81 \text{ mm}$ Geometric standard deviation $\sigma_{\rm g}$ = 1.18 < 1.4

Hydraulic parameters

Flow Depth h = 0.1 m

Discharge $Q = 201 \text{ s}^{-1}$

Average flow velocity
$$U_{avg} = 0.43 \text{ m s}^{-1}$$

Flow Froude number Fr = 0.43

Reynolds number $R = 1.12 \times 10^5$

Bed slope $S_0 = 0.004$ and 0.007 for WGB and SGB, respectively

Shear Reynolds number $R_* = 80$ and 85 for WGB and SGB, respectively

Roughness height $K_s = 1.25$ mm and 1.04 mm for WGB and SGB, respectively

Fig. 4 Schematic of the flume test section showing the flow measuring devices

Results and discussion

Time-averaged velocity vectors and vorticity contours

Time-averaged velocity vectors are expressed as

Magnitude = $(\overline{u}^2 + \overline{w}^2)^{0.5}$ Direction = $\tan^{-1}(\overline{w}/\overline{u})$

where \bar{u} and \bar{w} is the timeaveraged streamwise and vertical velocities, respectively

Time-averaged vorticity $\overline{\omega}$ is expressed as

$$\overline{\omega} = \left(\frac{\partial \overline{u}}{\partial z} - \frac{\partial \overline{w}}{\partial x}\right)$$

Fig. 5 Time-averaged velocity vectors and vorticity contours $\overline{\omega} h/u_*$ on a central vertical plane in the WGB and SGB. The vector $\rightarrow 0.25$ (m s⁻¹)

Time-averaged streamwise contours and DA streamwise velocity profiles

Time-averaged streamwise velocity is represented as \bar{u} and the DA streamwise velocity is expressed as $\langle \bar{u} \rangle$

 $\frac{\eta}{z}$

Fig. 7 Variations of DA streamwise velocity $\langle \bar{u} \rangle / u_*$ with $(z+\Delta z) / \Delta z$ in the WGB and SGB

Fig. 6. Contours of dimensionless time-averaged streamwise velocity on a vertical central plane in the WGB and SGB

Here, Δz is the distance of the virtual bed level from the roughness crest

 $z_1 = 0$ and $z = \Delta z$ at the virtual bed level

 $\Delta z = 2.12$ and 4.443 mm from the gravel crest for the WGB and SGB, respectively

XXXVIII International School of Hydraulics 21 - 24 May 2019 • Łąck • Poland

RSS contours and spatially averaged (SA) RSS profiles

Reynolds shear stress (RSS) is represented as $-\overline{u'w'}$ and the spatially averaged (SA) RSS is expressed as $\langle -\overline{u'w'} \rangle$

Fig. 9. Variations of SA RSS with *z/h* in the WGB and SGB

Fig. 8. Contours of dimensionless RSS on a vertical central plane in the WGB and SGB

where u' and w' are the temporal velocity fluctuations in the streamwise and vertical directions, respectively

$$\text{Total SA shear stress } \tau = \langle -\overline{u'w'} \rangle + \langle -\tilde{u}\tilde{w} \rangle + \langle \tau_v \rangle$$

Dispersive shear stress contours and SA dispersive shear stress profiles

 $\frac{\eta}{z}$

SA dispersive shear stress is represented as $\langle -\tilde{u}\tilde{w} \rangle$

Fig. 11. Variations of SA dispersive shear stress with *z/h* in the WGB and SGB

Fig. 10. Contours of dimensionless dispersive shear stress on a vertical central plane in the WGB and SGB

where \tilde{u} and \tilde{w} are the temporal velocity fluctuations in the streamwise and vertical directions, respectively

Contours of TKE streamwise and vertical fluxes

The streamwise TKE flux f_{ku} is estimated as

 η/z

 η/z

$$f_{ku} = 0.75(\overline{u'u'u'} + \overline{u'u'w'})$$

and the vertical TKE flux f_{kw} is estimated as

$$f_{kw} = 0.75(\overline{u'w'w'} + \overline{w'w'w'})$$

Fig. 12. Contours of dimensionless TKE streamwise flux on a vertical central plane in the WGB and SGB

Fig. 13. Contours of dimensionless TKE vertical flux on a vertical central plane in the WGB and SGB

Profiles of SA TKE fluxes and dispersive fluxes

The SA streamwise and vertical TKE fluxes are denoted by $\langle f_{ku} \rangle$ and $\langle f_{kw} \rangle$, respectively, whereas the SA streamwise and vertical dispersive fluxes are as $\langle f_{fu} \rangle$ and $\langle f_{fw} \rangle$ respectively

Here, $\langle f_{fu} \rangle = 0.75(\langle \tilde{u}\tilde{u}\tilde{u} \rangle + \langle \tilde{u}\tilde{u}\tilde{w} \rangle)$ and $\langle f_{fw} \rangle = 0.75(\langle \tilde{u}\tilde{w}\tilde{w} \rangle + \langle \tilde{w}\tilde{w}\tilde{w} \rangle)$

Fig. 14. Variations of SA streamwise TKE flux $\langle f_{ku} \rangle / u_*^3$, SA vertical TKE flux $\langle f_{kw} \rangle / u_*^3$, dispersive streamwise TKE flux $\langle f_{fu} \rangle / u_*^3$, and dispersive vertical TKE flux $\langle f_{fw} \rangle / u_*^3$ with z/h in the WGB and SGB

SA turbulent kinetic energy (TKE) budget equation

Here ρ is the mass density of water

According to Kolmogorov's second hypothesis, within the inertial subrange, the dissipation rate ε can be estimated using second order velocity structure function, such that

$$\varepsilon = \frac{1}{r} \left(\frac{\Delta u^2}{C_2} \right)^{3/2}$$

where Δu is the streamwise velocity increment along the spatial distance in the streamwise direction, expressed as $\Delta u = \langle [u'(x+r) - u'(x)] \rangle$, C_2 is a universal constant equaling 2.12, x is the measuring distance in the streamwise direction from a convenient location, r is the separation distance between two measuring locations

Fig. 15. Variations of second-order velocity structure function $\Delta u^2 / u_*^2$ with r/d_{50} for different z/h in the WGB and SGB

Fig. 16. Variations of Kolmogorov's SA two-thirds law with r/d_{50} for different z/h in the WGB and SGB

TKE production rate contours and SA TKE production rate profiles

Fig. 18. Variations of dimensionless SA TKE production rate with z/h in the WGB and SGB

TKE dissipation rate contours and SA TKE dissipation rate profiles

xxxviii International School of Hydraulics 21 - 24 May 2019 • Łąck • Poland

Fig. 20. Variations of dimensionless SA TKE dissipation rate with z/h in the WGB and SGB

TKE diffusion rate contours and SA TKE diffusion rate profiles

1

0.8

0.6

0.4

0.2

0

-4

-0.1

u/z

xxxvIII International School of Hydraulics 21 - 24 May 2019 • Łąck • Poland

Fig. 21. Contours of dimensionless time-averaged TKE diffusion rate on a vertical central plane in the WGB and SGB

0

 $\langle t_d \rangle h / u_*^3$

2

4

-2

Ś

WGB

SGB

25

Pressure energy diffusion rate contours and SA pressure energy diffusion rate profiles

5

Fig. 23. Contours of dimensionless pressure energy diffusion rate on a vertical central plane in the WGB and SGB

Fig. 24. Variations of dimensionless SA pressure energy diffusion rate with z/h in the WGB and SGB

Conclusions

- Action of water work changes the randomly poised SGB roughness structure to the organized WGB roughness structure with a higher roughness
- At a given vertical distance, all the turbulence parameters are observed to be higher in WGB than those in the SGB
- The SA TKE flux plots reveals that the sweeps are the governing events in the nearbed flow zone, while in the main flow, the ejections dominate
- For small values of separation distance, the second-order velocity structure function follows the 2/3 slope, indicating the presence of inertial subrange in both the beds

Recommendation

As it is seen that SGB underestimates the turbulence characteristics, therefore it is prudent to perform experimental study in a WGB, while the results obtained from SGB should be used with precaution.

Thank you